Point-of-Care Ultrasound and Physical Examination for the Hospitalist

Discussants:

Ian Ross, M.D., FACP

Assistant Professor of Medicine Washington University School of Medicine John Cochran VA, Medicine Service

Richard Shellenberger, D.O., FACP

Associate Program Director Internal Medicine Residency, Trinity Health Ann Arbor Hospital , Ann Arbor, Michigan

Moderator: Woo Moon, D.O., FACP

Associate Professor of Medicine Mercy Hospitalists & Mercy St. Louis IM Residency

Disclosures

None

Learning Objectives

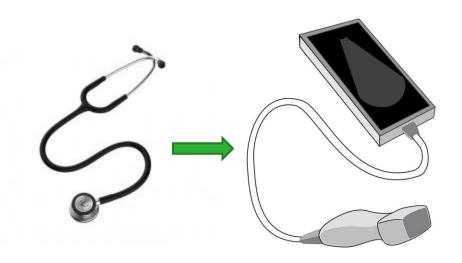
 Recognize diagnostic strengths and limitations of physical examination and POCUS

 Compare and contrast physical exam, POCUS and standard studies for diagnoses commonly encountered by the hospitalist

Develop a diagnostic approach integrating both modalities

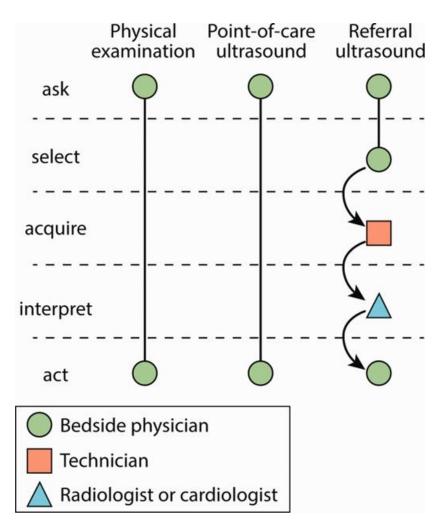
Dr. Shellenberger and the physical exam-based approach

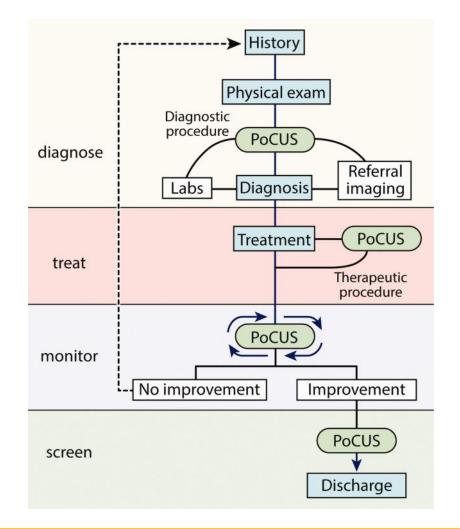
- Background
 - MSUCOM medical school Good education in PE
 - SJMHAA now Trinity Health for Residency and now Faculty/APD
- What I like most about Physical Exam
 - It is what makes us "Physicians" and clinicians
- How I use Physical Exam in my practice
 - Rely on the PE for all clinical decisions
- 1 common myth about Physical Exam (dispelled)
 - That it is not accurate, reliable or cool!

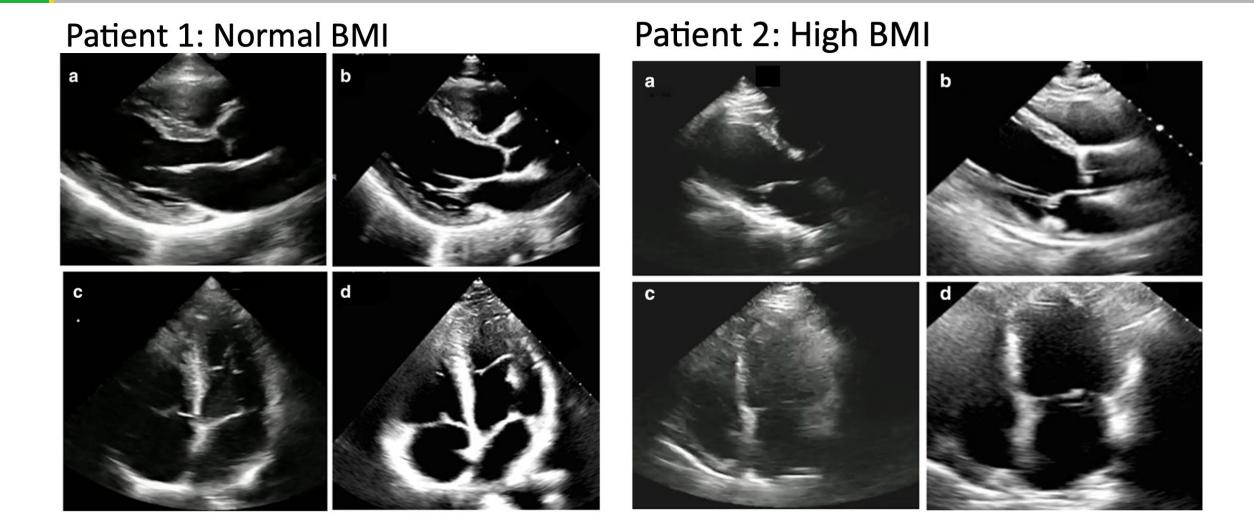

Dr. Ross and the POCUS-based approach

POCUS = point-of-care ultrasound

DOES	DOES NOT
Answer a focused clinical question with multisystem exam	Replace comprehensive/consultative diagnostic radiology studies
Allow for serial exams	Replace standard diagnostic pathways


Skill development requires practice in:


- Indication
- Acquisition
- Interpretation
- Medical decision-making (clinical integration)


Dr. Ross and the POCUS-based approach

A myth about POCUS: overcomes obesity difficulties

Lee, L et al. Current Cardiology Reports. 2020

Clinical case

- CC: "I feel lightheaded"
- 62 yo M with ESRD, CAD s/p PCI (2010), HTN, COPD who presents with hypotension during dialysis. BP was recorded at 70/40 and patient felt lightheaded. A nurse noted he was confused, and dialysis was stopped. A 1L normal saline fluid bolus was administered and he was sent to the ED. He now feels improved.
- ROS: intermittent chest discomfort, dyspnea on exertion, and cough over last week.
- ED Vitals: Temp 36.8 C HR 110 BP 105/85 RR 16 (94% RA)

Ross- DDx and Approach

- New congestive heart failure
- Pericardial effusion
- Severe aortic stenosis
- Right heart failure
- Occult infection
- Dehydration/poor intake

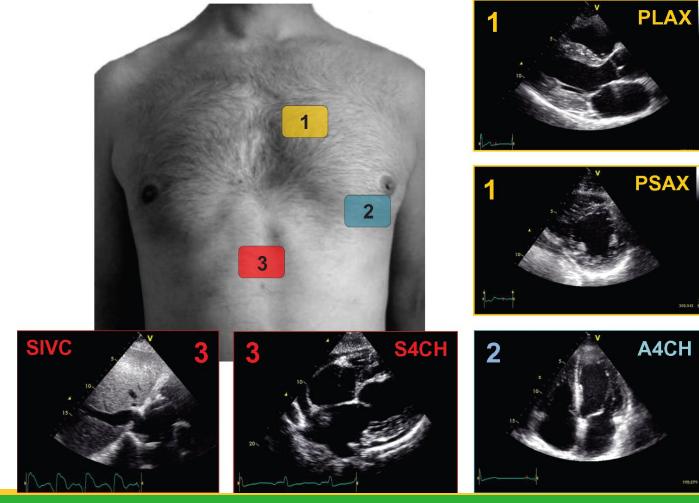
Goals of initial assessment:

- Cardiovascular & pulmonary focused exams (physical and POCUS)
- 2. Volume status (!)
- 3. Rule out serious/lifethreatening etiologies

Shellenberger- DDx and Approach

- Additions to Dr. Ross's list
 - Volume depletion
 - Sepsis
 - MI
 - Adrenal insufficiency
 - Aortic aneurysm rupture

- Initial assessment
 - ABCs and orthostatic vital signs
 - Head to toe examination (fast but thorough)
 - Always think of what is the most serious or life-threatening possibilities and try to assess for these first!


Cardiac Ultrasound Exam

5 Classic Views

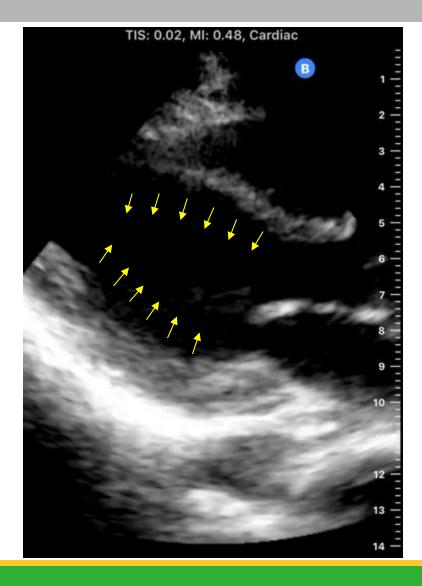
- Parasternal long axis
- Parasternal short axis
- Apical four chamber
- Subxiphoid four chamber
- Inferior vena cava

Focused Interpretation

- LV systolic function
- RV enlargement
- Pericardial effusion
- IVC size/collapsibility

Neskovik AN et al. European Heart Journal – Cardiovascular Imaging 2018

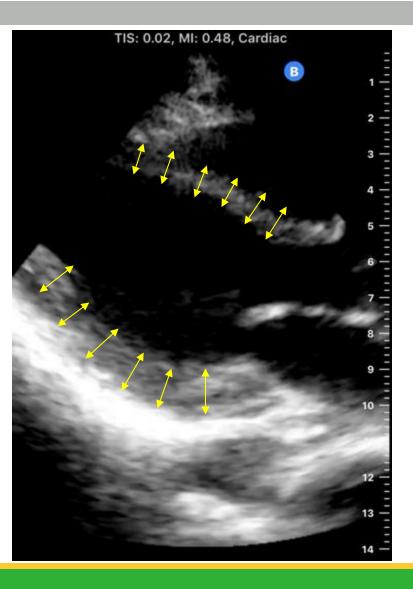
Left Ventricular Systolic Function


Mostly a *qualitative* assessment

- Categorized as hyperdynamic, normal, reduced or severely reduced
 - 1. Endocardial excursion
 - 2. Myocardial thickening and
 - 3. Septal motion of the anterior mitral valve leaflet (EPSS)
 - Only utilized in PSLA

LV Systolic Function- Parasternal Long Axis

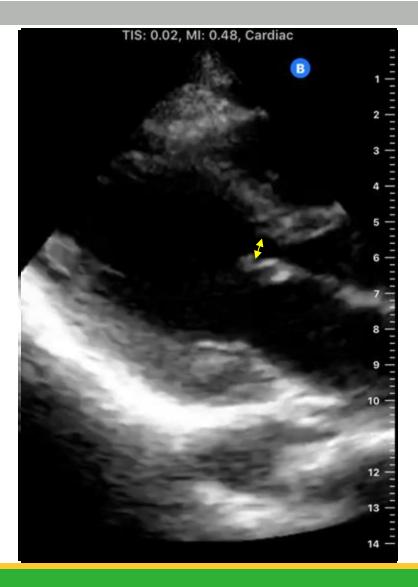
1) Endocardial excursion:



LV Systolic Function- Parasternal Long Axis

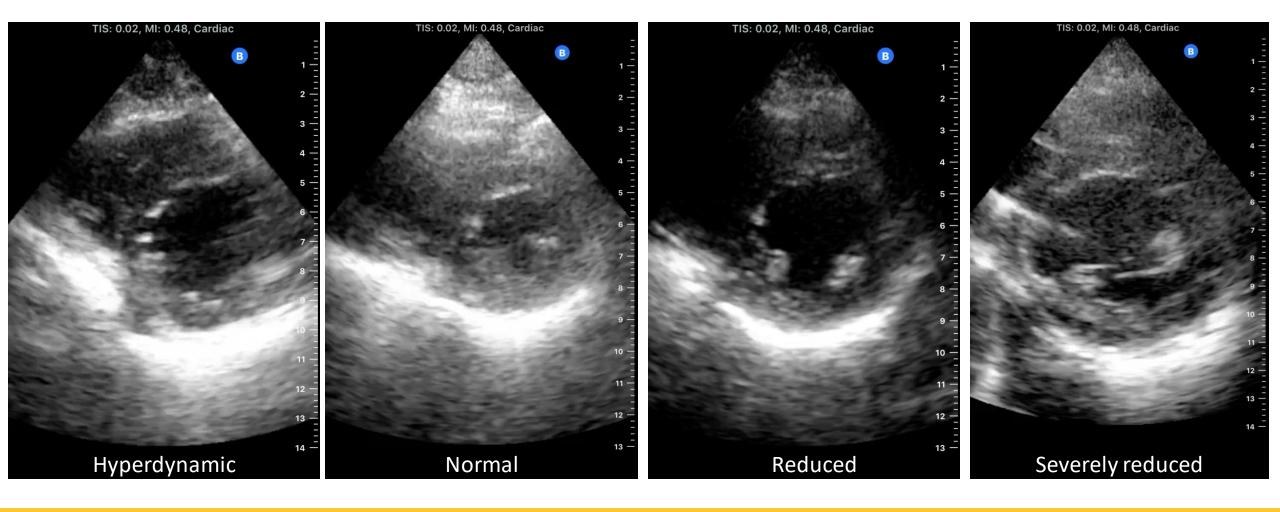
2) Myocardial thickening:

1) Endocardial excursion:



LV Systolic Function- Parasternal Long Axis

1) Endocardial excursion:


2) Myocardial thickening:

3) Anterior mitral valve leaflet motion:

LV Systolic Function- Parasternal Short Axis

POCUS & LV Systolic Function

Visual estimate of any EF abnormality (handhelds vs TTE)

- Experienced user:
 - Any EF: 88% sens, 96% spec
 - Mod-severe EF: 93% sens, 96% spec
 - Diagnostic OR 276

- Inexperienced user:
 - Any EF: 83% sens, 89% spec
 - Mod-severe EF: 84% sens, 91% spec
 - Diagnostic OR 41

CHF – Neck Veins

- Jugular venous pressure
 - Reference is sternal angle = 5 cm
 - Measure vertical height
 - EJ or IJ?
 - Right or left?
 - L compressed by aorta in mediastinum

Jugular Venous Pressure

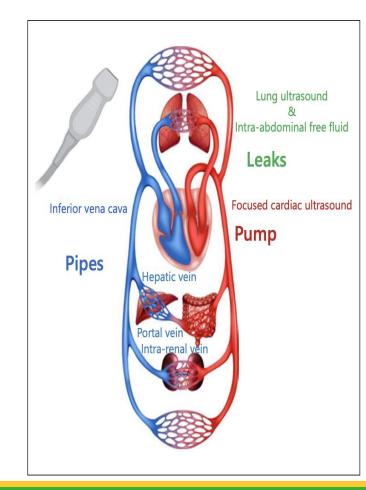
Hepato-jugular reflux

Apply pressure to the liver (RUQ)
 Observe for a rise in JVP

Sustained rise ≥ 4cm

Positive result

Data on PE for CHF


- Estimating bedside CVP vs right heart catheterization
 - JVP 8 cm (+) LR = 9.7 (-) LR = 0.3
 - JVP 12 cm + LR = 10.4 (-) LR = 0.1
 - IOR for JVP varies from 0.1 to 0.8
- Abdominojugular test for elevated LVEDP
 - (+) LR = 8.0 (-) LR = 0.3
 - IOR = 0.92
 - IOR for radiologist for CHF only 0.83!
- PMI Lateral to MCL gives + LR of **10.1** for detecting EF < 50%</p>

POCUS and Volume Status

- One of the most useful modalities of combined cardiac/lung/vascular
- Augmentation of exam

Physical Exam	POCUS		
S3, displaced PMI	EPSS, visual EF estimate		
Crackles	B-lines, bilateral		
Decreased sounds	Visualized effusion		
L parasternal heave	RV:LV size ratio		
JVP	IVC assessment/sono JVP		
	S3, displaced PMI Crackles Decreased sounds L parasternal heave		

Ultrasound JVP

1. Hospital bed at 30-45° incline

2. Relaxed neck, slight left head turn

3. Probe transverse position, parallel to floor

Start just above clavicle

Track up (cranially)

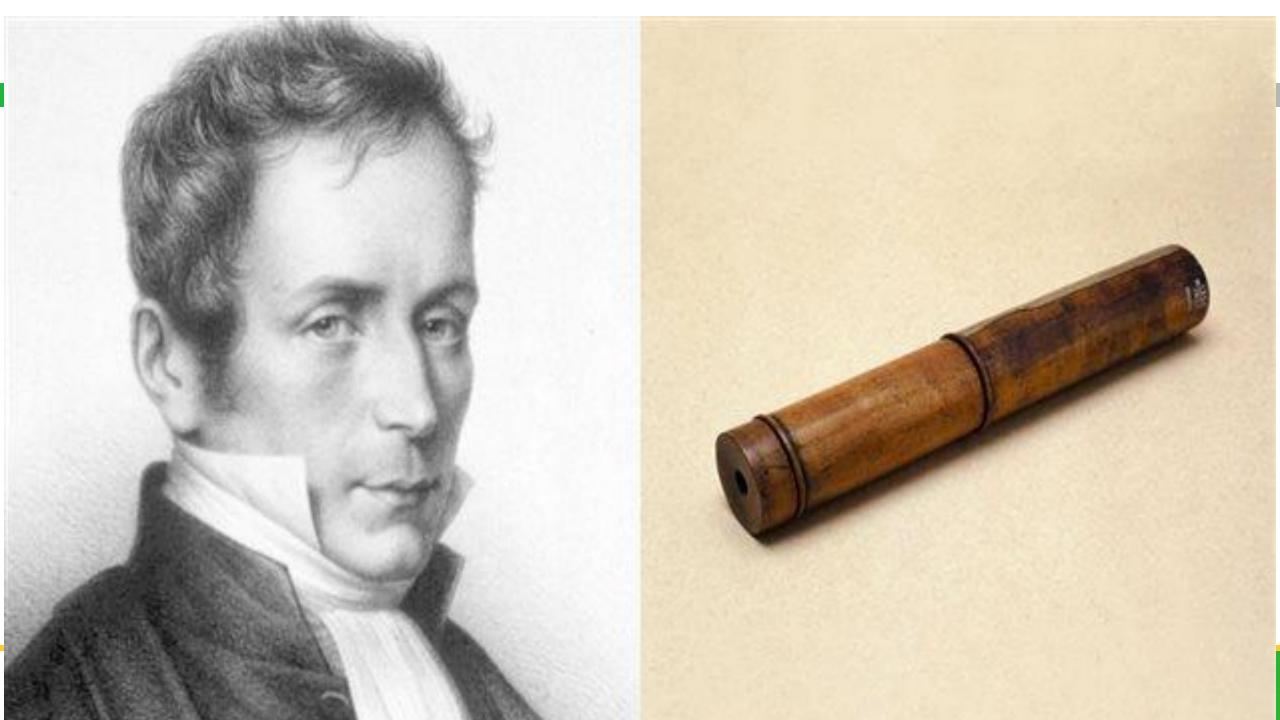
4. Note point where IJ < CCA throughout resp cycle

Est height above sternal angle

Wang L et al. Annals of IM. 2022.

CCA

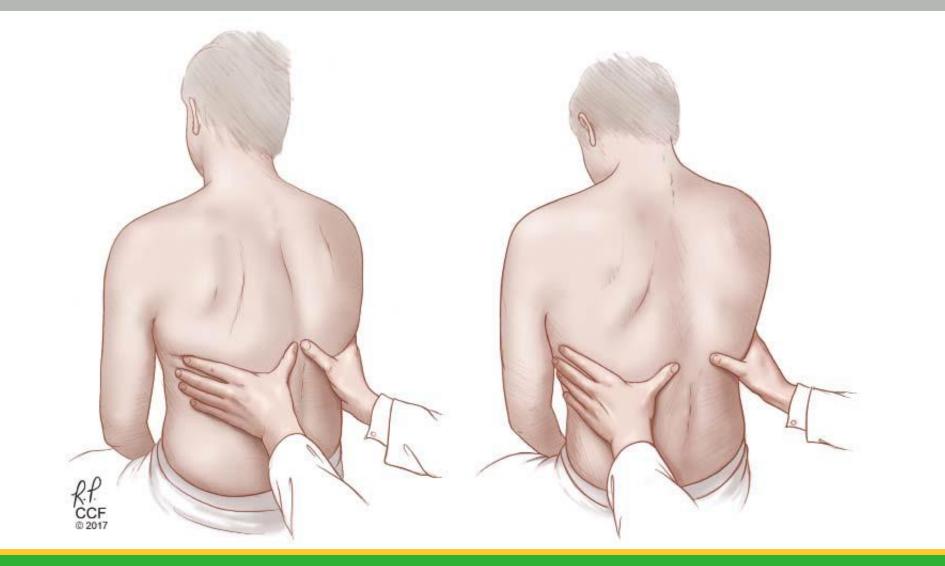
IJ


Ultrasound JVP

Technique	Strengths	Limitations	Sens	Spec	+LR	-LR	Take-aways
Visual JVP	 No resources req'd Extensively studied Prognostic 	 Not visible in some Wide variation in accuracy depending on experience 	47-92	83-96	8.9	0.3	Your go-to, tried and true techniquebut takes practice!
US JVP	Obtainable in all ptsFairly easy to learn	Must have ultrasoundVariable techniques	73-78	77-95	3.4	0.3	Performs similarly to vJVP but attainable in 100%
IVC	 Pairs well with other POCUS modalities 	 Must have ultrasound Technical factors limit Training required to avoid mistakes Requires respiratory effort from pt 	73-87	82-85	4.9	0.16- 0.32	Effective but due to necessary training, can be highly user- dependent

*All numbers are in reference to detection of an elevated CVP, which can be defined as >8 cm H2O or >5 mm Hg.

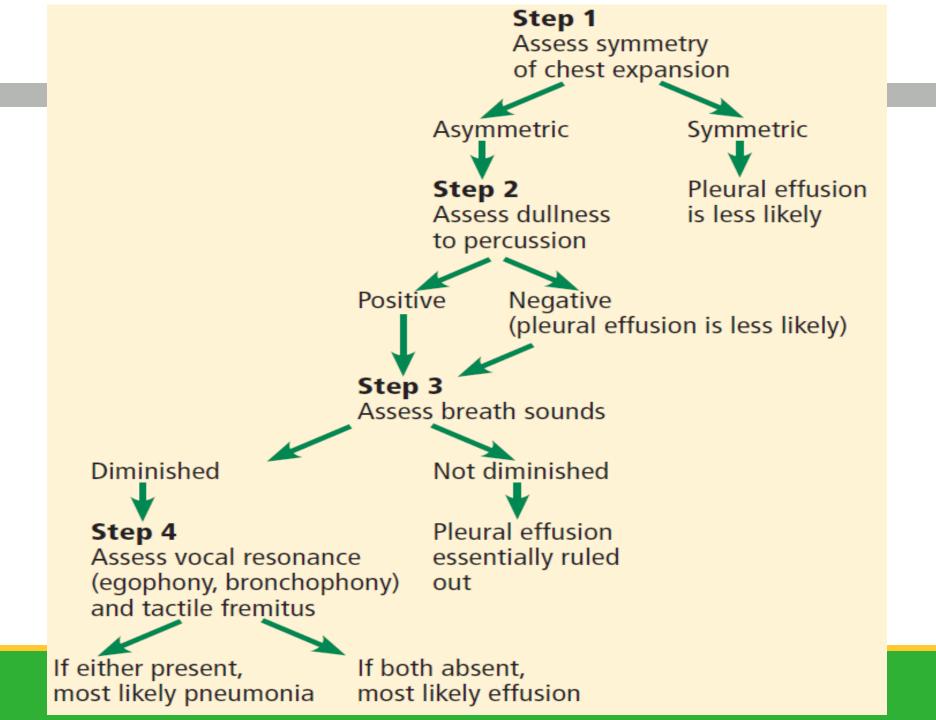
Bhagra A et al. *Mayo Clinic Proceedings.* 2016 McGee S. Evidence-Based Physical Diagnosis. Chapter 36, 295-307 Rizkallah J. et al. *PLOS ONE.* 2014 Wang L. et al. *Annals of IM*. 2022



Physical examination for pneumonia

TABLE 3 Signs of pneumonia Signs Negative Positive likelihood likelihood ratio ratio Asymmetric chest expansion⁶ 1.0 44.1 Egophony^{6,10,11} 6.8 0.9 **Dullness to percussion**^{6,10–12} 5.7 0.9 Bronchophony¹⁰ 3.3 0.9 Crackles^{6,10–12} 3.2 0.7 **Diminished breath sounds**^{10–12} 2.5 0.7

Remember this



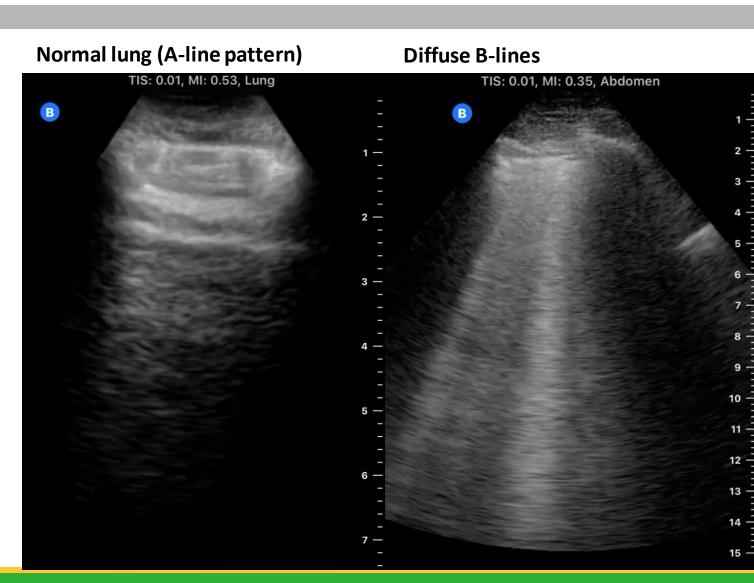
Pleural Effusions

Findings	Likelihood ratios			
Percussion dullness	(+) 8.7	(-) 0.3		
Chest expansion	(+) 8.1	(-) 0.3		
Diminished tactile fremitus	(+) 5.7	(-) 0.1		
Diminished breath sounds	(+) 5.2	(-) 0.1		
Diminished vocal resonance	(+) 6.5	(-) 0.3		

ACP

Lung examination

- Crackles (never rales!)
 - Early inspiratory
 - Detecting COPD LR =14.6
- Paninspiratory Crackles
 - CHF or PNA
- Late inspiratory fine crackles
 - Fibrosis



Lung/Pleura Ultrasound

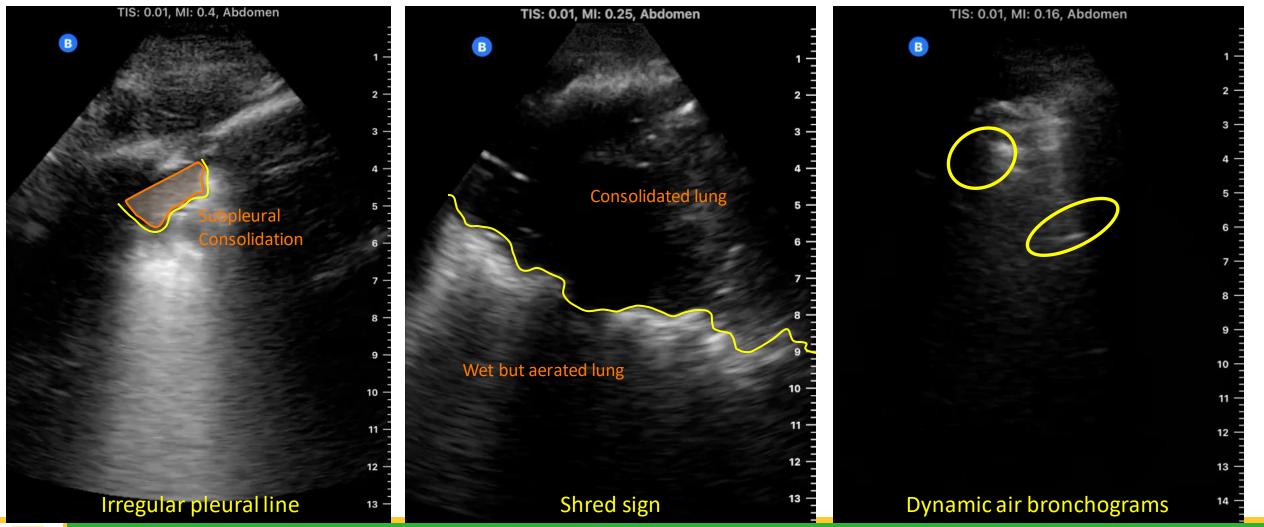
Pulmonary Edema

- A negative chest x-ray in ED will miss 1/5 diagnoses of acute heart failure¹
- Lung US vs CXR^{2,3}
 - Sensitivity 15% higher (as high as 92%)
 - Specificity: 92 vs 87%

Lung/Pleura Ultrasound

Pleural Effusion¹

- LUS is extraordinarily sensitive
- Can detect 5-20 mL
- Upright CXR can't detect <150 mL
- Superior fluid characterization vs other imaging modalities


Lung/Pleura Ultrasound

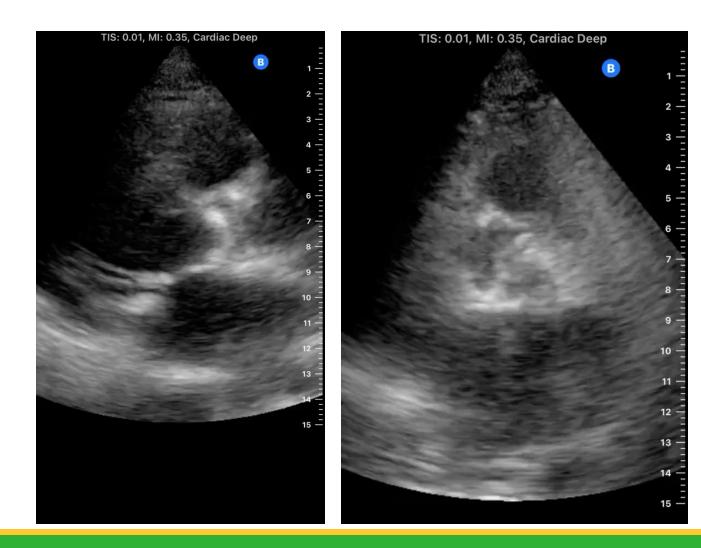
Pneumonia

- CT (+ clinical correlation) is still imaging gold standard
- LUS: 90-97% sens, 94-99% spec¹
- Outperforms CXR: 75% sens/spec²
- Many patterns described

Pneumonia

Hot off the press! Aortic Stenosis (moderate-severe)

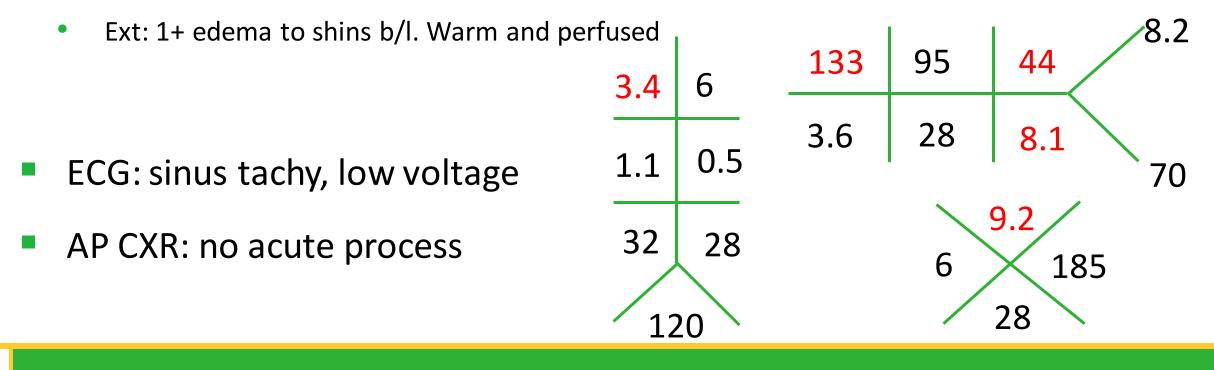
Physical exam finding	Sensitivity	Specificity	(+) LR	(-) LR
Diminished S2	59%	95%	10.9	0.4
Delayed carotid upstroke	57%	94%	9.0	0.5
Murmur radiating to the carotid	93%	66%	2.7	0.1


Shellenberger RA, Crass S, Jevicks J, Badhwar A, Albright J, Kumar A. Bedside Physical Examination for the Diagnosis of Aortic Stenosis: A Systematic Review and Meta-analysis. CJC Open. 2023 Feb 27;5(5):373-379. doi: 10.1016/j.cjco.2023.02.007. PMID: 37377515; PMCID: PMC10290951.

POCUS & Aortic Stenosis

 Stenosis → diminished mobility, thickening, calcification

 Normal appearance essentially rules out severe AS


 Need comprehensive echo but POCUS used for screening^{1,2,3}

Back to case

- Physical exam:
 - CV: RRR, normal S1/S2. No murmurs. Distant heart sounds. JVP 14 cm
 - Lungs: CTAB, no crackles. Symmetric chest expansion. Normal percussion

Cardiac Tamponade

Physical Finding	Frequency (%)
Elevated Neck Veins (JVP)	100
Tachycardia	81-100
Pulsus paradoxus	
>10	98
>20	78
>30	49
Diminished Heart Tones	36-84
Pericardial rub	27

Pulsus Paradoxus – 2 methods

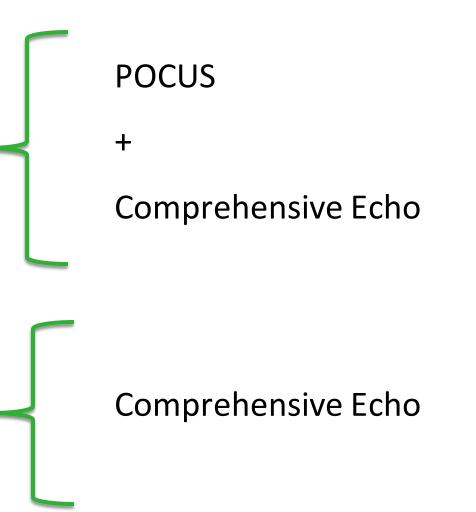
- #1 is old school and harder
 - Slowly deflate BP cuff (not the automatic)
 - Difference between:
 - SBP of the 1st Korotkoff sound that disappears with inspiration
 - SBP when the Korotkoff sound no longer disappears with inspiration
- #2 not as time honored but easier!
 - Difference in SBP in expiration and inspiration
 - Not as many studies

POCUS and Cardiac Tamponade

Broad DDx of Pulsus Paradoxus¹

- Asthma exacerbation
- COPD exacerbation
- Hypovolemia
- Large compressive pleural effusion
- Hemodynamically significant pulmonary embolus

Pericardial effusion


- Recognition included in most protocols
- Non-cardiologists can reliably diagnose with >95% accuracy vs TTE^{2,3}
- Focus on size & hemodynamics

Cardiac Tamponade

Echo diagnostic criteria:

- 1. IVC Plethora (>2.1 cm, <50% inspiratory collapse)
- 2. Cardiac chamber collapse
- 3. Exaggerated respiratory variation of transvalvular velocities
- 4. Expiratory hepatic vein diastolic flow reversals

POCUS Findings in Cardiac Tamponade

IVC Plethora:

>2.1 cm in diameter with < 50% inspiratory diameter decrease

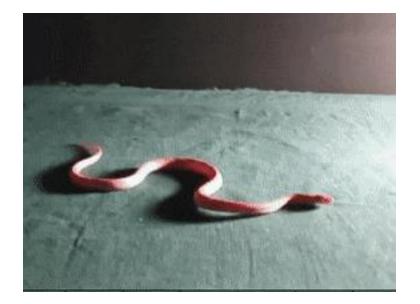
97% sensitive but 40% specific

(helpful NPV)

Cardiac chamber collapse

 $(\geq 1/3 \text{ of the cardiac cycle})$

RV: early diastole


60-90% sens; 85-100% spec

RA: late diastole/early systole

94% sens; 100% spec

Cardiac Tamponade

Final Diagnosis

- Dialysis-related pericardial effusion with cardiac tamponade
- Thought to be related to pericarditis, inadequate volume removal or dialysis alone¹
- Hypotension during dialysis can commonly be the presenting symptom²

- Patient underwent urgent pericardiocentesis with >1000 mL of serosanguinous fluid drained
- Workup for infection and malignancy was negative
- The patient continued dialysis without recurrence

Conclusions

- Physical examination is still relevant
- PE is fast and accurate
- PE is what makes us "physicians"
- You are never too experienced to learn new PE skills

- IM POCUS is an extension of physical examination
- Accuracy can meet or exceed other imaging modalities
- Responsible use requires training
- POCUS is not infallible and does not replace a quality examination

Q&A

Special thanks to: Woo Moon, D.O, FACP

